AVL Trees
#include <stdio.h>
#include <stdlib.h>
// Structure to represent a node in the AVL tree
struct Node {
int key;
struct Node* left;
struct Node* right;
int height;
};
// Function to get the height of the node
int height(struct Node* N) {
if (N == NULL)
return 0;
return N->height;
}
// Function to get the maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
// Helper function that allocates a new node with the given key
struct Node* newNode(int key) {
struct Node* node = (struct Node*)malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // New node is initially added at leaf
return(node);
}
// Right rotate subtree rooted with y
struct Node* rightRotate(struct Node* y) {
struct Node* x = y->left;
struct Node* T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
// Return new root
return x;
}
// Left rotate subtree rooted with x
struct Node* leftRotate(struct Node* x) {
struct Node* y = x->right;
struct Node* T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node* N) {
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Function to insert a key in the subtree rooted with node and returns the new root of the subtree
struct Node* insert(struct Node* node, int key) {
// 1. Perform the normal BST insertion
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else { // Equal keys are not allowed in BST
printf("The key %d already exists in the AVL tree.\n", key);
return node;
}
// 2. Update height of this ancestor node
node->height = 1 + max(height(node->left), height(node->right));
// 3. Get the balance factor of this ancestor node to check whether
// this node became unbalanced
int balance = getBalance(node);
// 4. If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
// return the (unchanged) node pointer
return node;
}
// Function to find the node with minimum key value found in that tree
struct Node* minValueNode(struct Node* node) {
struct Node* current = node;
// Loop down to find the leftmost leaf
while (current->left != NULL)
current = current->left;
return current;
}
// Recursive function to delete a node with given key from subtree with given root. It returns root of the modified subtree.
struct Node* deleteNode(struct Node* root, int key) {
// STEP 1: PERFORM STANDARD BST DELETE
if (root == NULL) {
printf("Key %d does not exist in the AVL tree.\n", key);
return root;
}
// If the key to be deleted is smaller than the root's key, then it lies in left subtree
if (key < root->key)
root->left = deleteNode(root->left, key);
// If the key to be deleted is greater than the root's key, then it lies in right subtree
else if (key > root->key)
root->right = deleteNode(root->right, key);
// if key is same as root's key, then This is the node to be deleted
else {
// node with only one child or no child
if ((root->left == NULL) || (root->right == NULL)) {
struct Node* temp = root->left ? root->left : root->right;
// No child case
if (temp == NULL) {
temp = root;
root = NULL;
}
else // One child case
*root = *temp; // Copy the contents of the non-empty child
free(temp);
}
else {
// node with two children: Get the inorder successor (smallest in the right subtree)
struct Node* temp = minValueNode(root->right);
// Copy the inorder successor's data to this node
root->key = temp->key;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->key);
}
}
// If the tree had only one node then return
if (root == NULL)
return root;
// STEP 2: UPDATE HEIGHT OF THE CURRENT NODE
root->height = 1 + max(height(root->left), height(root->right));
// STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to check whether this node became unbalanced)
int balance = getBalance(root);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && getBalance(root->left) >= 0)
return rightRotate(root);
// Left Right Case
if (balance > 1 && getBalance(root->left) < 0) {
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right Right Case
if (balance < -1 && getBalance(root->right) <= 0)
return leftRotate(root);
// Right Left Case
if (balance < -1 && getBalance(root->right) > 0) {
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// Function to print preorder traversal of the tree
void preOrder(struct Node* root) {
if (root != NULL) {
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
// Main function to drive the AVL Tree insertion and deletion
int main() {
struct Node* root = NULL;
int choice, key;
do {
printf("\nAVL Tree Operations Menu:\n");
printf("1. Insert a key\n");
printf("2. Delete a key\n");
printf("3. Print Preorder traversal\n");
printf("4. Exit\n");
printf("Enter your choice: ");
scanf("%d", &choice);
switch (choice) {
case 1:
printf("Enter key to insert: ");
scanf("%d", &key);
root = insert(root, key);
break;
case 2:
printf("Enter key to delete: ");
scanf("%d", &key);
root = deleteNode(root, key);
break;
case 3:
printf("Preorder traversal of the AVL tree is:\n");
preOrder(root);
printf("\n");
break;
case 4:
printf("Exiting...\n");
break;
default:
printf("Invalid choice! Please try again.\n");
break;
}
} while (choice != 4);
return 0;
}
Comments
Post a Comment