exp:16 histogram
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans n = int(input("Enter number of data points: ")) m = int(input("Enter number of features for each data point: ")) data = [] print("\nEnter the data points:") for i in range(n): point = [] for j in range(m): value = float(input(f" Value {j+1} of point {i+1}: ")) point.append(value) data.append(point) X = np.array(data) k = int(input("\nEnter number of clusters (k): ")) kmeans = KMeans(n_clusters=k, random_state=0) kmeans.fit(X) labels = kmeans.labels_ centroids = kmeans.cluster_centers_ print("\nCluster Centers:") print(centroids) print("\nCluster Labels:") for i, label in enumerate(labels): print(f"Point {i+1}: Cluster {label}") if m == 2: plt.figure(figsize=(6,5)) plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='rainbow', s=80) plt.scatter(centroid...