Posts
dissimilarity matrix
- Get link
- X
- Other Apps
import numpy as np import pandas as pd from scipy.spatial.distance import pdist, squareform data = {'Attribute1': [2, 5, 1, 6], 'Attribute2': [3, 8, 2, 7]} df = pd.DataFrame(data) print("Dataset:") print(df) dissimilarity = pdist(df.values, metric='euclidean') dissimilarity_matrix = squareform(dissimilarity) dissimilarity_df = pd.DataFrame(dissimilarity_matrix, index=['Instance1','Instance2','Instance3','Instance4'], columns=['Instance1','Instance2','Instance3','Instance4']) print("\nDissimilarity Matrix:") print(dissimilarity_df)
dissimilarity matrix update
- Get link
- X
- Other Apps
import numpy as np
import pandas as pd
from scipy.spatial.distance import pdist, squareform
data = {'Attribute1': [2, 5, 1, 6], 'Attribute2': [3, 8, 2, 7]}
df = pd.DataFrame(data)
print("Dataset:")
print(df)
dissimilarity = pdist(df.values, metric='euclidean')
dissimilarity_matrix = squareform(dissimilarity)
dissimilarity_df = pd.DataFrame(dissimilarity_matrix,
index=['Instance1','Instance2','Instance3','Instance4'],
columns=['Instance1','Instance2','Instance3','Instance4'])
print("\nDissimilarity Matrix:")
print(dissimilarity_df)
k means in python
- Get link
- X
- Other Apps
import numpy as np import pandas as pd from scipy.spatial.distance import pdist, squareform num_instances = int(input("Enter number of instances (rows): ")) num_attributes = int(input("Enter number of attributes (columns): ")) data = [] for i in range(num_instances): print(f"\nEnter values for Instance {i+1}:") row = [] for j in range(num_attributes): value = float(input(f" Attribute {j+1}: ")) row.append(value) data.append(row) df = pd.DataFrame(data, columns=[f'Attribute{j+1}' for j in range(num_attributes)]) print("\nDataset:") print(df) dissimilarity = pdist(df.values, metric='euclidean') dissimilarity_matrix = squareform(dissimilarity) instance_labels = [f'Instance{i+1}' for i in range(num_instances)] dissimilarity_df = pd.DataFrame(dissimilarity_matrix, index=instance_labels, columns=instance_labels) print("\nDissimilarity M...
java apriori
- Get link
- X
- Other Apps
import java.util.*; public class Apriori { static List<Set<String>> dataset = Arrays.asList( new HashSet<>(Arrays.asList("Milk", "Bread", "Eggs")), new HashSet<>(Arrays.asList("Milk", "Bread")), new HashSet<>(Arrays.asList("Milk", "Eggs")), new HashSet<>(Arrays.asList("Bread", "Eggs")), new HashSet<>(Arrays.asList("Milk", "Bread", "Butter")) ); static double minSupport = 0.4; public static Set<String> getAllItems(List<Set<String>> dataset) { Set<String> items = new HashSet<>(); for (Set<String> transaction : dataset) { items.addAll(transaction); ...
apriori algorithm python update
- Get link
- X
- Other Apps
from mlxtend.frequent_patterns import apriori, association_rules from mlxtend.preprocessing import TransactionEncoder import pandas as pd dataset = [ ['I1', 'I2', 'I3', 'I4'], ['I1', 'I2', 'I3'], ['I1', 'I2'], ['I1', 'I4'], ['I2', 'I4'] ] te = TransactionEncoder() te_ary = te.fit(dataset).transform(dataset) df = pd.DataFrame(te_ary, columns=te.columns_) print("Transaction Data:") print(df) frequent_itemsets = apriori(df, min_support=0.4, use_colnames=True) print("\nFrequent Itemsets:") print(frequent_itemsets) rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.6) print("\nAssociation Rules:") print(rules[['antecedents', 'consequents', 'support', 'confidence', 'lift']]) Output Transaction Data: I1 I2 I3 I4 0 True True True True 1...
naive bayes update
- Get link
- X
- Other Apps
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score,confusion_matrix from sklearn.datasets import load_iris iris=load_iris() X=iris.data y=iris.target X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3) model=GaussianNB() model.fit(X_train,y_train) y_pred=model.predict(X_test) acc=accuracy_score(y_test,y_pred) cm=confusion_matrix(y_test,y_pred) print(acc) print(cm) Output Accuracy: 0.9555555555555556 Confusion Matrix: [[17 0 0] [ 0 17 1] [ 0 1 9]]